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ABSTRACT 

It is shown that  the framework of [4]  can be used to give 
a simplified proof of conditions given by Eaves and 
Zangwill [1]   (which weaken the uniform concavity require- 
ment on the objective function used by the author in [A]) 
under which inactive constraints may be dropped after each 
subproblem in cutting-plane algorithms.    The convergence 
rate established in [4]  is improved and  its application 
extended. 
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A NOTE ON CUTTING-PLANE METHODS WITHOUT 

NESTED CONSTRAINT SETS 

by 

Donald M. Topkls 

The problem considered is that of maximizing a real-valued continuous function 

£ over a nonempty closed convex subset S of E  . One Is given a compact convex 

set T containing S . The general algorithm to be considered proceeds by setting 

T ■ E  , and, given T,  as the intersection of E  and a finite set of closed 

half-spaces containing S , picking x,  to maximize f over T.M T , stopping 

with x.  optimal if x. e S , and otherwise letting S.  be the intersection of 

E  and a subset of the half-spaces determining T.  such that y      maximizes  f 

over S il T ,  finding a certain closed half-space H.  containing S but not 

x. , setting T. . " Si. '' Hu » and continuing. 

It was shown by the author in [A] that if H,  is picked in a certain manner 

as below and  f is uniformly concave on T then  {x. }  converges to the optimum. 

Eaves and Zangwill [1] allowed the cuts to be certain closed convex sets (rather 

than Just closed half-spaces) and only required (essentially) that f be quasi- 

concave on T  and strictly quasi-concave on any convex subset of T ~ S in 

proving the optimality of this procedure by using the notion of a separator.  In 

Theorem 2 the result of Eaves and Zangwill (with the cut: here limited to certain 

closed half-spaces but with their weakened conditions on  f) is established by a 

much simpler proof using the framework of [4]. Theorem 3 generalizes and extends 

the convergence rate established in [4] . 

A mapping  (a(x),b(x))  from T - S into En+  with a(x) e En and 

b(x) E E  is a limiting cutting-plane function  if S ^ H(x) i {y : a(x)*y > b(x)} 

This compactness assumption is relaxed in [4]. 
tt 

If  f  is pseudo-concave on T  then  S,  would satisfy these conditions if the 

constraints dropped are any of those constraints determining T,  which are inactive 

at xk . 
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for all    x c T -  S   ,   (a(x),b(x))     is bounded on    T - S  , and for any 

(x.   : k - 1,2,  ..,} C T " S    with    11m x.   - x e T - S    the limit point    (ä,b) 

of any convergent subsequence of    {(a(x, ),b(x. ))}    satisfies    a'x < b   .    A generalized 

version of this notion was introduced by Zangwill [5], and examples are given in 

[4] and [5]. 

The following was proven in [4]. 

Theorem 1; 

If H(x)  is determined by a limiting cutting-plane function, H. - H(x. ) , 

and lim x.  ■ lim x,   ■ x , then x is optimal. 
i-MO    i    i-H»    i 

Theorem 2; 

Suppose  that    H(x) is determined by a limiting cutting-plane  function, 

H.   ■ H(x. )   ,  and     f    is quasi-concave on    T    and strictly quasi-concave on any 

convex subset of    T -  S .    Then the limit point of any convergent subsequence of 

{x, }    is optimal. 

Proof; 

Let x be the limit point of any convergent subsequence of  (x, } .  Since 

{x. } is bounded there then exists a subsequence ix. I such that  lim x  = x 
I KiJ   _      i+~ Ki 

and lim x,  . - y .  Now suppose x is not optimal.  If x were feasible it 
i-*»  i 

would be optimal [4] so x ^ S , and by Theorem 1, x ^ y .  Since x,   maxinizes 
^■i 

f over the convex set S.  0 T and x,  . e Tk +1 ^ T E Sb n T for a11 i  » 

f/x  > ^_ f/ax.  + (1 - a)x, A    for all  i and all a e [0,1] .  By continuity, 

(1) f(x) ^ f(ctx + (1 - a)y)     for all a e [0,1] . 

Since f(x,)  is nonincreasing in k it is easily seen that  f(x) - f(y) so by 

quasi-concavity 
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(2) f(ax + (1 - ot)y) ^ min {f(x),f(y)} - f(x)        for all    o e  [0,1]   . 

By  (1)  and  (2), 

(3) f(x)  - f(ax + (1 - a)y) for all    a e  [0,1]   . 

Since S Is closed and x ^ S , there exists y c   [0,1)  such that 

ax + (1 - a)y i  S for all a e [Y»1] • But by (3) and the strict quasi-concavity 

of f on the line segment joining yx + (1 - Y)y and x , 

(4) f(ax + (1 - cOy) > min {f(x),f(YX + (1 - Y)y)} - f(x) for all a e (Y,1) . 

But   (4)   contradicts  (3),  so    x    must be optimal.   || 

Levitln and Polyak [3]   have  established an arithmetic convergence rate  for a 

cutting-plane algorithm which,   when specialized to  subsets of    E    ,  has    S.   ■ T. 

(although their proof  still holds  if  inactive constraints were dropped after each 

subproblem)  and uses  the cutting-plane method of  Lemma  3 of   [4]   (i.e.,     oi(x)  ■  1 

always,   below).    Here  their algorithm and method of proof are generalized  to  show 

the same convergence rate for algorithms which allow inactive constraints  to be 

dropped  after each subproblem and  for which the cutting plane at    x e T -   S    may 

be generated at some point    w(x)   e T -  S    other than    x    on the line segment 

joining     x    to a certain  interior  point of    S     (as  in Lemma 4  of  [4]).     The 

following eliminates  the restriction of  the generalization given in [4]   that 

G(w(x))  ^_ eG(x)    for  some    e  e   (0,1]    and  the dependence of  the convergence rate on 

e   . 

Theorem   3; 

Suppose that S = {x : G(x) >_ 0 , x e T} , G(x)  is concave and continuous on 

T , there exists t e S with G(t) > 0 , and for x £ T - S define 

X(x) - sup U : Xx + (1 - X)t t  S} and set w(x) » a(x)x + (1 - a(x))t for any 

a(x) e [X(x),l] . Suppose also that there exists a function p(w) from T - S 



Into    E      with     lp(w)|   < K    for all    w e T -  S    and such  that 

G(y)  <^G(w) + u(w)*(y - w)    for all    w e T - S    and    y e S   ,  and let 

H.   - {x  :  0  <_G(w(x.)) + ^(wCx,))^* - w(x.))}   .    If    f    is  strongly concave on 

T    and differentiable on    S    and    x    is  the unique maximum of     f    on    S   ,  then for 

k >. 1 

and 

|xk-J|<     ! 
a2^: 

where 

I . 2Y(^
2
      a    - !&&• II ^Y\bdK   /     ' a2        bdK      ' 

d ■ max  {|Vf(y)|   : y £ S}   , b - max  {|y-t|   :yeT}   ,  and    y    is as  in the 

definition of strong concavity. 

Proof: 

Let    Xk -  X(xk)   ,  ak - aix^)   , w^ =■ w(xk)   ,  and    uk - P (wk) 

Clearly     X^ +  (1 - Xk)t " 7" w
k 

+  I1 " —)c    and    G^A
k

x
k +  (1 " \)t)  - 0   , 

so by concavity 

and 

{-•4 (5) 11 - —)G(t) i^V 

■ -,;■.„■  .-..^.—... .,.■■■,..., 



Since    t e S  , 

(6) G(t) lG(wk) + vy(t  - wk)   . 

But it is easily seen  that    xk i Hk    so    xk + xk+1 E Tk+1 fl T - l^ 0  Sk H T 

and by the strict concavity of    f    on    T   , 

(7) 0 -G(wk) + V(xk+1- V 

or 

(8) 0 - G(wk)  + akMk-(xk+1 - xk) + (1 - ctk)yk.(xk+1 - t)   . 

By  (6) and  (7) 

(9) -G(t) 1 V(x, .,  " t) k N k+1 

so by  (8),   (9). and  (5) 

0 <G(wk)  + Vk^Vl'V  -   ^-\^^ 

-(-a G(t)  + akK|xk+1 - xk|   -   (1 - ak)G(t) 

^ (i - Ak)G(t) + ouK|x. 
k 

k'^^k+l " V 

<-a.(l-  A.)G(t) +a.K|x..1 - x. | 

or 

(10) 1 - xkiGÜT 'Vi - V 

By the concavity of  f and the optimaltty of x on S , 

^ammmmi^^m 



(11) f(xk) f(x)  < f (xk) - f (Xkxk + (1 - Xk)t) 

<   (1 - Xk)(xk - t)-7f(Akxk + (1 - Xk)t) 

1 (1 -  \)\\ ~ t|-|^(Akxk +  (1 - Xk)t) 

< (1 - xk)bd . 

Combining (10) and  (11), 

(12) f(x.)  - f(x)  < |#r ix 
G(t)   '"k+l " Xkl 

Since    x, ,x,   .   £ S.  fl T    and    x,     maximizes the strongly concave function 

f    over the convex set    5.01,    for some    Y > 0 

(13) f(x.)  > f(i5(x.   + x. .,)) lJsf(x.) + ^(x. .,) + Y|X.   - x 
k        k+1 k+lJ 'k      ~k+l' 

and  from  (13) 

(14) ^V - ^v^-^k-vJ  • 

Now let    Dk - f(xk)  -  f(x)   > 0   .    By  (12)  and  (14) 

^)V+1 - ^MMfyfeK - w 
or 

(15) Vi ^ Dk - aiDk ■ Dk(1 - aiDk) • 

The arithmetic convergence rate for D.  then follows from (15) as in [2] 

by observing that 

.w*i.-' ■ 
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and using indueti;A on (16) to get 

k   o 

or 

(17) D,, < 
k - 1    . 2 a-k * 
F + alk   1 
o 

As In (13) and  (14), It follows that 

(18) D.   - f(x.) - f(x) 12Y|X.   - x|2  , 

and by (17) and  (18) 

k. - xl   <        i 
k /Zyajk 
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